

Seismic Loads: IBC 2024

Strength Level Forces

Risk Category : II
 Importance Factor (Ie) : 1.00

Site Class : D

Ss (0.2 sec) = 0.58 g
 S1 (1.0 sec) = 0.17 g

Site specific ground motion analysis performed:

Sms = 0.790 S_{DS} = 0.527 Design Category = D
 Sm1 = 0.460 S_{D1} = 0.307 Design Category = D

Seismic Design Category = D
 Redundancy Coefficient p = 1.30
 Number of Stories: 1

Structure Type: All other building systems

Horizontal Struct Irregularities: No plan Irregularity

Vertical Structural Irregularities: No vertical Irregularity

Flexible Diaphragms: No

Building System: **Structural steel systems not specifically detailed for seismic resistance**

Seismic resisting system: **Structural steel systems not specifically detailed for seismic resistance**

System Structural Height Limit: **System not permitted for this seismic design category**

Actual Structural Height (hn) = 11.0 ft

See ASCE7 Section 12.2.5 for exceptions and other system limitations

DESIGN COEFFICIENTS AND FACTORS

Response Modification Coefficient (R) =	3	To = 0.2(Sd1/Sds) =	0.116
Over-Strength Factor (Qo) =	3	Ts = Sd1/Sds =	0.582
Deflection Amplification Factor (Cd) =	3	Long Period Transition Period (TL) =	6 sec

S_{DS} = 0.527
 S_{D1} = 0.307

Seismic Load Effect (E) = Eh +/- Ev = $\rho Q_E +/- 0.2S_{DS} D$ = 1.3Qe +/- 0.105D Q_E = horizontal seismic force
 Special Seismic Load Effect (Em) = Emh +/- Ev = Qo Q_E +/- 0.2S_{DS} D = 3Qe +/- 0.105D D = dead load

ALLOWABLE STORY DRIFT

Structure Type: All other structures

Allowable story drift Δa = 0.020hsx where hsx is the story height below level x

PERMITTED ANALYTICAL PROCEDURES

Index Force Analysis - Method Not Permitted (only applies to Seismic Category A)

Model & Seismic Response Analysis - Permitted (see code for procedure)

Equivalent Lateral-Force (ELF) Analysis - Permitted

Building period coet. (C _T) =	0.020	Cu = 1.40	
Approx fundamental period (Ta) =	C _T h _n ^x =	0.121 sec x = 0.75	Tmax = CuTa = 0.169 sec
User calculated fundamental period =			T = 0.121 sec

Method 2: Seismic response coef. (Cs) = Sds/R = 0.176
 need not exceed Cs = Sd1/R = 0.846
 but not less than Cs = 0.044Sds*I = 0.023
 USE Cs = 0.176

Design Base Shear V = 0.176W

Method 1: Enter Sa =
 Seismic response coef. (Cs) = Sal/R = 0.000
 but not less than Cs = 0.044Sds*I = 0.023
 Cs = Method not applicable

SEISMIC FORCES AT FLOORS - ELF Procedure

Total Stories =	1	Floor Dead Load =	0.0 psf	Roof Snow Load =	0.0 psf
Building length L =	103.0 ft	Floor LL to include =	0.0 psf	Roof Equip wt =	0.0 kips
Building width W =	43.0 ft	Floor Equip wt =	0.0 kips	Parapet weight =	0.0 psf
hn =	11.0 ft	Partition weight =	0.0 psf	Parapet height =	0.0 ft
k =	1.000	Ext Wall Weight =	0.0 psf		
V =	0.176W	Roof Dead Load =	10.0 psf		
Bottom Floor (level 1) is a slab on grade					

Seismic Forces (Including all exterior walls)

Level (x)	EL above Seismic Base	Level Weight	Wx hx ^x	Cvx = $\frac{Wx hx^x}{\sum Wi hi^x}$	Base Shear Distribution			Diaphragm Force Fpx		
					Fx=CvxV	$\sum Fx$ (k)	Story M	$\sum Wi$ (k)	Fpx	Design Fpx
Roof	11.80	44	523	1.000	7.78	7.8	0	44	7.8	7.8
1	0.00	0	0	0.000	0.00	0.0	0	0	0.0	0.0
Base		44		1.000		7.8	92			
92 = Base M										

Diaphragm Forces excluding parallel exterior walls

Diaphragm Force Fpx Parallel to Bldg Length V= 8k						Diaphragm Force Fpx Normal to Bldg Length V= 8k						
Cvx =	Fx=CvxV	$\sum Fx$ (k)	$\sum Wi$ (k)	Fpx	Design Fpx	Level (x)	Cvx =	Fx=CvxV	$\sum Fx$ (k)	$\sum Wi$ (k)	Fpx	Design Fpx
1.000	7.78	7.8	44	7.8	7.8	Roof	1.000	7.8	7.8	44	7.8	7.8
0.000	0.00	0.0	0	0.0	0.0	1	0.000	0.0	0.0	0	0.0	0.0
1.000		7.8				Base	1.000		7.8			