

Project: Creech DRP – Shop C Date: Oct 07, 2025 Org: Michael Baker International

Section 1 — Criteria Output from Model (verify ASCE 7-22 matches overall criteria)

- **Codes:** ASCE 7-22; IBC 2022; UFC 3-301-01; AISC 360-16 (LRFD); ACI 318-19; TMS 402/602-16; SDI C-2017.
- **Risk Category:** III **Site Class:** D **Seismic Design Category:** D.
- **Seismic system parameters:** $R = 6.0$, $\Omega_0 = 2.0$, $C_d = 5.0$, $I_{e(\text{seismic})} = 1.25$.
- **Wind:** $V = 105$ mph, Exposure C, $GC_{pi} = \pm 0.55$.
- **Service limits (project practice):** Roof $\Delta_{\text{total}} \leq L/240$; Floor $\Delta_{LL} \leq L/360$ and $\Delta_{\text{total}} \leq L/240$; Building drift $H/400$.

Loading Criteria / Load Maps (psf → plf)

Uniform design loads (from BOD):

- **Roof:** DL = 30 psf; LL = 20 psf (min); P_f (balanced) = 3.5 psf; **snow drift peaks up to 32 psf** with drift widths $W_d = 10, 15, 20$ ft (checked).
- **Mezzanine:** DL = 78 psf; LL = 125 psf (Partitions 20 psf and MEP 10 psf carried as needed).

Tributaries used:

- **Roof wall tributary half-span:** 26.0 ft ($\approx 51.83/2$).
- **Mezz wall tributary half-span:** 12.0 ft (≈ 24 ft beam span/2).

If your latest plan has a different mezz half-span, I'll update the line loads and re-size the footings.

Wall line loads (service) — per linear foot of wall:

- **Roof-bearing walls** (e.g., XW-A/9-10, XW-G/9-10)
 - DL: $30 \times 26.0 = 780$ plf
 - LL: $20 \times 26.0 = 520$ plf
 - P_f (balanced): $3.5 \times 26.0 = 91$ plf
 - **Snow drift surcharge (line)** = $32 \times (W_d/2) \Rightarrow 160/240/320$ plf for $W_d = 10/15/20$ ft
 - **Roof gravity (balanced)** $w_{\text{svc}} = 1,391$ plf ($780 + 520 + 91$)
 - **With drift:** $1,551/1,631/1,711$ plf
- **Mezz-bearing walls** (e.g., XW-C/9-10)
 - DL: $78 \times 12.0 = 936$ plf
 - LL: $125 \times 12.0 = 1,500$ plf
 - **Mezz gravity** $w_{\text{svc}} = 2,436$ plf

Seismic Criteria (ELF set-up for shop-level compare)

- **Mapped (project baseline):** $S_s = 0.724$, $S_1 = 0.226$, $S_{DS} = 0.589$, $S_{D1} = 0.324$; **Site D, SDC D, $I_e = 1.25$** .
- **Seismic response coefficient:**

$$C_s = \frac{S_{DS}}{R/I_e} = \frac{0.589}{6/1.25} = 0.589 \cdot \frac{1.25}{6} \approx \mathbf{0.123}$$

- **Seismic weight** (assumed: mezzanine across full shop; roof snow not in because $P_f < 30$ psf; include 25% of storage LL):
 - Roof DL: $30 \text{ psf} \times 1,198 \text{ sf} \approx \mathbf{35.9 \text{ k}}$
 - Mezz DL: $78 \text{ psf} \times 1,198 \text{ sf} \approx \mathbf{93.4 \text{ k}}$
 - 25% floor LL: $0.25 \times 125 \text{ psf} \times 1,198 \text{ sf} \approx \mathbf{37.4 \text{ k}}$

- ⇒ $W \approx 166.7 \text{ k}$

- **Base shear (ELF):**

$$V = C_s W \approx 0.123 \times 166.7 \approx 20.5 \text{ k}$$

Wind Criteria (make determination whether wind/seismic governs)

- **Velocity pressure at roof height** (assume mean roof height $h \approx 24 \text{ ft}$):

$$q_z = 0.00256 K_z K_{zt} K_d V^2$$

With $V = 105 \text{ mph}$, $K_d = 0.85$, $K_{zt} = 1.0$, $K_z \approx 0.85$ at ~20–30 ft:

$$q_z \approx 0.00256 \times 0.85 \times 1.0 \times 0.85 \times 105^2 \approx 20.4 \text{ psf}$$

- **Preliminary MWFRS base shear (order-of-magnitude):**

Projected area normal to long side: $A_p = h \times b \approx 24 \times 50.4 = 1,210 \text{ sf}$

Use representative net pressure factor $C_{\text{net}} \approx 1.3$ (replace with ASCE 7-22 table values in L-calc):

$$V_{\text{wind}} \approx q_z C_{\text{net}} A_p \approx 20.4 \times 1.3 \times 1,210 \approx 32 \text{ k}$$

Governance (prelim): Wind $\sim 32 \text{ k} >$ Seismic $\sim 20.5 \text{ k} \rightarrow$ expect **wind to govern** MWFRS for **OT/sliding**.

Wind Components & Cladding

- **Internal pressure:** $GC_{pi} = \pm 0.55$.
- q_h at roof height (from above) $\approx 20.4 \text{ psf}$.
- **Method:** For each roof/wall zone (1/2/3), compute $p = q_h(GC_p) + q_i(GC_{pi})$ with effective area A_e bins per ASCE 7-22 Ch. 30.
- **Application:**
 - **Roof joist uplift seats** → use **0.9D ± W (C&C)** for anchor/seat checks (corners/edges typically control).
 - **CMU OOP** → span-by-span wall checks using zone pressures; include DL counterweight.
 - **Deck/fasteners/edge angles** → use zone-specific C&C tables in the C-appendix.

Snow Criteria

- **Balanced:** $P_f \approx 3.5 \text{ psf}$ (low).
- **Drift peaks:** up to **32 psf** with drift widths $W_d = 10, 15, 20 \text{ ft}$ (checked).
- **Use in calcs:**
 - **Roof joists** strength (LRFD) and service deflection
 - **Roof wall line loads** (adds **160/240/320 plf** on top of balanced roof gravity)
 - **Not** included in seismic W ($P_f < 30 \text{ psf}$)

Load Combinations / Envelopes (what each system uses)

LRFD (ASCE 7-22 §2.3.2) — strength:

1. **1.4D**
2. **1.2D + 1.6L + 0.5S**
3. **1.2D + 1.6S + (L or 0.5W)** (includes drift variants $W_d = 10/15/20$)
4. **1.2D + 1.0W + L + 0.5S**
5. **1.2D + 1.0E + L + 0.2S**
6. **0.9D ± 1.0W** (uplift/OT)
7. **0.9D ± 1.0E**

By system:

- **Foundations (strip footings):** service **D + (L/S)** for bearing/settlement; service **W/E** for sliding & OT; LRFD for flexure/shear steel using factored soil pressure q_u .

- **CMU walls:** C&C for OOP; **ELF/MWFRS** added only if wall is part of lateral in this shop; anchorage/collectors per diaphragm reactions.
- **Mezzanine beams:** LRFD for strength; ASD for deflection; **vibration screen**.
- **Roof joists:** LRFD with **drift variants**; ASD for Δ ; **0.9D \pm W** for uplift seats.

Project: Creech DRP – Shop C Date: Oct 07, 2025 Org: Michael Baker International

Section 2 — Foundations (Strip Footings)

2.1 Inputs (BOD / project standards)

- **Codes:** ASCE 7-22 (loads), IBC 2022, UFC 3-301-01, AISC 360-16 (LRFD), ACI 318-19, TMS 402/602-16.
- **Materials / criteria:** $q_{\text{allow}} = 3.0 \text{ ksf}$, $\mu = 0.50$, min embed = 18 in, $k = 100 \text{ pci}$, $f'_c = 4 \text{ ksi}$, Grade 60 rebar.
- **Loads:**
 - **Roof:** DL 30 psf, LL 20 psf, $P_f = 3.5 \text{ psf}$, snow drift peak 32 psf with $W_d = 10/15/20 \text{ ft}$ checks.
 - **Mezzanine:** DL 78 psf, LL 125 psf.
- **Service limits:** Roof $\Delta_{\text{total}} \leq L/240$; Floor $\Delta_{LL} \leq L/360$ and $\Delta_{\text{total}} \leq L/240$; Building drift $H/400$.
- **Bay geometry (for calc):** joist span $\approx 51.83 \text{ ft}$ (roof), joist spacing $7\text{'}-0\text{" o.c.}$; mezzanine beam span (to CMU) $\approx 24 \text{ ft}$ (\Rightarrow half-trib $\approx 12 \text{ ft}$).
- CMU walls are **gravity bearing**, not designated lateral in the scope provided (uplift anchors still checked later).

2.2 Tributaries and service line loads (psf \rightarrow plf)

Roof-bearing wall (e.g., XW-A/9-10 or XW-G/9-10)

- Tributary half-span to wall: **26.0 ft** ($\approx 51.83/2$).
- DL line load = $30 \times 26.0 = 780 \text{ plf}$
- LL line load = $20 \times 26.0 = 520 \text{ plf}$
- P_f (balanced) line load = $3.5 \times 26.0 = 91 \text{ plf}$
- **Balanced roof gravity (service)** $w_{\text{svc,bal}} = 1,391 \text{ plf}$
- **Snow drift surcharge (line)** = $32 \times (W_d/2) \Rightarrow 160/240/320 \text{ plf}$ (for $W_d = 10/15/20 \text{ ft}$)
 - w_{svc} with drift = **1,551/1,631/1,711 plf**

Mezzanine-bearing wall (e.g., XW-C/9-10)

- Tributary half-span to wall: **12.0 ft** ($\approx 24/2$).
- DL line load = $78 \times 12.0 = 936 \text{ plf}$
- LL line load = $125 \times 12.0 = 1,500 \text{ plf}$
- **Mezz gravity (service)** $w_{\text{svc}} = 2,436 \text{ plf}$

2.3 Select footing sizes (service bearing first)

Required width per foot (service):

$$B_{\text{req}} = \frac{w_{\text{svc}}}{q_{\text{allow}}}$$

- **Roof (balanced):** $B_{\text{req}} = 1,391/3,000 = 0.464 \text{ ft} = 5.6\text{"}$. **Roof (with $W_d = 20$):** $B_{\text{req}} = 1,711/3,000 = 0.57 \text{ ft} = 6.8\text{"}$.
- **Mezz:** $B_{\text{req}} = 2,436/3,000 = 0.812 \text{ ft} = 9.7\text{"}$.

Provide: Roof wall footing width $B = 24\text{"}$ (2.0 ft); Mezz wall footing width $B = 30\text{"}$ (2.5 ft).

2.4 Soil pressure for strength design (convert service \rightarrow factored)

Per foot length, service soil pressure $q_{\text{svc}} = w_{\text{svc}}/B$; take $q_u \approx 1.6 q_{\text{svc}}$ for gravity-strength combos (conservative envelope).

Roof wall footing ($B = 24\text{"} = 2.0 \text{ ft}$)

- $q_{\text{svc, bal}} = 1,391/2.0 = \mathbf{695.5 \text{ psf}} \Rightarrow q_u \approx \mathbf{1,113 \text{ psf}} = 1.113 \text{ ksf}$
- With $W_d = 20$: $q_{\text{svc}} = 1,711/2.0 = 855 \text{ psf} \Rightarrow q_u \approx \mathbf{1.368 \text{ ksf}}$ (for local drift peak check)

Mezz wall footing ($B = 30'' = 2.5 \text{ ft}$)

- $q_{\text{svc}} = 2,436/2.5 = \mathbf{974.4 \text{ psf}} \Rightarrow q_u \approx \mathbf{1.559 \text{ ksf}}$

2.5 Cantilever geometry (from CMU wall face)

Take 8" CMU wall thickness (actual 7½"; use 8" for calc). Projection each side of wall:

- **Roof footing** $B = 24''$: $a = (24 - 8)/2 = \mathbf{8''} = 0.667 \text{ ft}$
- **Mezz footing** $B = 30''$: $a = (30 - 8)/2 = \mathbf{11''} = 0.917 \text{ ft}$

2.6 Strength — one-way shear and flexure (ACI 318-19)

Pick trial thicknesses:

- **Roof footing thickness** $t = 12'' \Rightarrow d \approx 12 - 3.5 = \mathbf{8.5''}$
- **Mezz footing thickness** $t = 14'' \Rightarrow d \approx 14 - 3.5 = \mathbf{10.5''}$

Take $\phi = 0.9$ (tension); $f_y = 60 \text{ ksi}$; per-foot strip $b = 12''$.

2.6.1 Factored shear per foot

$$V_u = q_u \cdot a$$

- **Roof (balanced)**: $V_u = 1.113 \times 0.667 = \mathbf{0.742 \text{ k/ft}}$
- **Mezz**: $V_u = 1.559 \times 0.917 = \mathbf{1.429 \text{ k/ft}}$

Concrete shear capacity (one-way, very conservative quick check): $V_c \approx 2\sqrt{f'_c} b d$ (psi·in² → lb) with $\phi = 0.75$. For $f'_c = 4 \text{ ksi} \Rightarrow \sqrt{f'_c} \approx 63.25 \text{ psi} \Rightarrow 2\sqrt{f'_c} \approx 126.5 \text{ psi}$.

- **Roof**: $\phi V_c \approx 0.75 \times 126.5 \times 12 \times 8.5 \approx \mathbf{9.7 \text{ k/ft}} > 0.742 - \text{OK}$
- **Mezz**: $\phi V_c \approx 0.75 \times 126.5 \times 12 \times 10.5 \approx \mathbf{11.9 \text{ k/ft}} > 1.429 - \text{OK}$

2.6.2 Factored moment per foot

$$M_u = q_u \cdot \frac{a^2}{2}$$

- **Roof (balanced)**: $M_u = 1.113 \times 0.667^2/2 = \mathbf{0.247 \text{ k-ft/ft}}$ (drift case $q_u = 1.368 \text{ ksf} \Rightarrow M_u \approx 0.304 \text{ k-ft/ft}$)
- **Mezz**: $M_u = 1.559 \times 0.917^2/2 = \mathbf{0.655 \text{ k-ft/ft}}$

Convert to k-in/ft for steel sizing:

- **Roof**: $0.247 \times 12 = \mathbf{2.964 \text{ k-in/ft}}$ (drift case $0.304 \times 12 = \mathbf{3.65 \text{ k-in/ft}}$)
- **Mezz**: $0.655 \times 12 = \mathbf{7.86 \text{ k-in/ft}}$

Steel area (quick LRFD sizing) using $M_u \approx \phi A_s f_y z$ with $z \approx 0.9d$ (in):

- **Roof**: $d = 8.5'' \Rightarrow z \approx 7.65'' \Rightarrow \phi f_y z \approx 0.9 \times 60 \times 7.65 = \mathbf{413 \text{ (k-in/in}^2\text{)}}. A_s \gtrsim 2.964/413 = \mathbf{0.007 \text{ in}^2/\text{ft}}$ → minimum steel governs.
- **Mezz**: $d = 10.5'' \Rightarrow z \approx 9.45'' \Rightarrow \phi f_y z \approx 0.9 \times 60 \times 9.45 = \mathbf{510. A_s \gtrsim 7.86/510 = 0.015 \text{ in}^2/\text{ft}}$ → minimum steel governs.

Provide steel (per foot, longitudinal along wall):

- Roof footing: **#4 @ 12" o.c.** → $0.20 \text{ in}^2/\text{ft} (\gg 0.007)$
- Mezz footing: **#5 @ 12" o.c.** → $0.31 \text{ in}^2/\text{ft} (\gg 0.015)$

Top temperature/shrinkage (either footing): **#4 @ 18" o.c.** minimum. If a single uniform schedule is desired: specify **#5 @ 12" o.c.** bottom for **both**; it far exceeds demand and simplifies detailing.

2.7 Service bearing & settlement

- **Roof footing** ($B = 24"$): q_{svc} (balanced) = **695.5 psf**; with $W_d = 20 \Rightarrow 855 \text{ psf}$ (both $\ll 3,000 \text{ psf}$)
- **Mezz footing** ($B = 30"$): $q_{\text{svc}} = 974 \text{ psf}$ ($\ll 3,000 \text{ psf}$)

Settlement (elastic order-of-magnitude) at these pressures with $k = 100 \text{ pci}$ will be small and well within the $\leq 1"$ total / $1/2"$ differential criteria. Revisit if geotech revises parameters.

2.8 Sliding / Overturning

Inputs (service, per foot of wall)

- Wall height: $h = 24 \text{ ft}$
- Lateral reactions from L-pages (service):
 - Long walls (Grids A, G): $H_w = 318.9 \text{ plf} = 0.319 \text{ k/ft}$; $H_s = 203.6 \text{ plf} = 0.204 \text{ k/ft}$
 - Short walls (Grids 9, 10): $H_w = 318.2 \text{ plf} = 0.318 \text{ k/ft}$; $H_s = 431.0 \text{ plf} = 0.431 \text{ k/ft}$
- Vertical stabilizing loads used for **sliding** (service, per foot):
 - 8" CMU, fully grouted self-weight: $w_{\text{wall}} \approx 0.125 \text{ ft} \times 24 \text{ ft} \times 125 \text{pcf} = 0.375 \text{ k/ft}$
 - Roof line DL tributary to wall: joist DL = $30 \text{ psf} \times 7 \text{ ft} = 210 \text{ plf}$; end reaction = $210 \times 51.83/2 = 5.44 \text{ k}$; per-foot along wall = $5.44/7 = 0.777 \text{ k/ft}$.
 - Mezz line DL tributary to wall: beam DL = $78 \text{ psf} \times 6.5 \text{ ft} = 507 \text{ plf}$; end reaction = $507 \times 24/2 = 6.084 \text{ k}$; per-foot along wall = $6.084/6.5 = 0.937 \text{ k/ft}$.
 - Footing self-weight (adds to P_v): Roof walls ($B = 42" = 3.5\text{ft}$, $t = 12"$) $\Rightarrow \approx 0.525 \text{ k/ft}$; Mezz walls ($B = 32" = 2.667\text{ft}$, $t = 14"$) $\Rightarrow \approx 0.466 \text{ k/ft}$.
- **Stabilizing verticals for sliding:**
 - Roof-bearing wall: $P_v = 0.375 + 0.777 + 0.525 = 1.675 \text{ k/ft} \Rightarrow R = \mu P_v$
 - Mezz-bearing wall: $P_v = 0.375 + 0.937 + 0.466 = 1.776 \text{ k/ft} \Rightarrow R = \mu P_v$
- Soil-concrete interface friction (conservative): $\mu = 0.35$. \rightarrow Available frictional resistance per foot: $R = \mu P_v$.

2.8.1 Sliding (service)

$$\text{FS}_{\text{slide}} = \frac{R}{H} = \frac{\mu P_v}{H} \quad (\text{target} \geq 1.5)$$

Long walls (A,G) — roof-bearing example ($P_v = 1.675 \text{ k/ft}$, $R = 0.35 \times 1.675 = 0.586 \text{ k/ft}$):

- Wind: $H = 0.319 \Rightarrow \text{FS}_{\text{slide}} = 1.84$ — OK
- Seismic: $H = 0.204 \Rightarrow \text{FS}_{\text{slide}} = 2.87$ — OK

Short walls (9,10) — two cases:

- Roof-bearing case ($P_v = 1.675$, $R = 0.586$):
 - Wind $H = 0.318 \Rightarrow \text{FS}_{\text{slide}} = 1.84$ — OK
 - Seismic $H = 0.431 \Rightarrow \text{FS}_{\text{slide}} = 1.36$ — < 1.5 (**tight**)
- Mezz-bearing case ($P_v = 1.776$, $R = 0.35 \times 1.776 = 0.622$):
 - Wind $H = 0.318 \Rightarrow \text{FS}_{\text{slide}} = 1.96$ — OK
 - Seismic $H = 0.431 \Rightarrow \text{FS}_{\text{slide}} = 1.44$ — **slightly** < 1.5

2.8.2 Overturning (report demand; final check in F-Section)

Per-foot overturning moment demand at base (about footing toe) from lateral:

$$M_{\text{OT}} \approx H \cdot \frac{h}{2} \quad (h = 24 \text{ ft} \Rightarrow h/2 = 12 \text{ ft})$$

- **Long walls (A,G):** Wind $M_{\text{OT}} = 3.83 \text{ k-ft/ft}$; Seismic $M_{\text{OT}} = 2.45 \text{ k-ft/ft}$
- **Short walls (9,10):** Wind $M_{\text{OT}} = 3.82 \text{ k-ft/ft}$; Seismic $M_{\text{OT}} = 5.17 \text{ k-ft/ft}$

Foundation check to be completed in the F-Section with actual footing width B , soil bearing q_{allow} , cover, and any shear key/passive contribution:

- Bearing pressure distribution (no-tension criterion if required): $e = M_{OT}/V$ and compare to $B/6$.
- Alternative $FS_{OT} = M_R/M_{OT}$ with resisting moment $M_R = V \cdot (B/2)$ (plus overburden or key/passive if included per geotech).
- If $e > B/6$ or $FS_{OT} < 1.5$ under short-wall seismic, increase B , add key/grade-beam tie, or include permitted overburden in V .

Note. The values above are demands; pass/fail is established on the F-pages where the actual footing geometry and soil parameters are applied.

2.9 Foundation schedule

Wall line (typ.)	Footing width B	Thickness t	Bottom steel (longitudinal)	Top temp steel	q_svc (psf)	Notes
Roof-bearing CMU	24"	12"	#4 @ 12" o.c.	#4 @ 18"	696 (855 w/ $W_d = 20$)	Bearing OK; one-way shear OK; drift case OK
Mezz-bearing CMU	30"	14"	#5 @ 12" o.c.	#4 @ 18"	974	Bearing OK; one-way shear OK

Project: Creech DRP – Shop C Date: Oct 07, 2025 Org: Michael Baker International

Section 3 — CMU Wall Design — Scope

- **OOP by C&C** (zone pressures, service deflection)
- **Mezz beam pockets** (bearing length, plate, grout solid, confinement bars)
- **AISC J10** web bearing/crippling at beam ends
- **Anchorage** of roof/mezz to CMU

3.1 L-Section Data & Lateral Distribution

- **Plan:** 50.40 ft (long) \times 23.77 ft (short); mean roof height $h = 24$ ft.
- **Wind (service MWFRS):** $V = 105$ mph, Exposure C, $K_d = 0.85$, $K_{zt} = 1.0$, $K_z \approx 0.85$.

$$q_z = 0.00256 K_z K_{zt} K_d V^2 \approx 20.4 \text{ psf}$$

- **Projected area:** $A_p = h \cdot b$ (b = plan width normal to wind).
- **MWFRS resultant coefficient:** $C_{\text{net}} \approx 1.3$ (placeholder—use ASCE 7-22 tables in final L-pages).
- **Seismic ELF:** $S_{DS} = 0.589$, $R = 6.0$, $I_e = 1.25 \Rightarrow C_s \approx 0.123$.
- **Seismic weight (this shop):** Roof DL 35.9k + Mezz DL 93.4k + 25% LL 37.4k $\approx 166.7 \text{ k}$ \rightarrow base shear $V \approx 20.5 \text{ k}$ per direction.
- **Wall lengths:** Long (A & G) = 50.40 ft; Short (9 & 10) = 23.77 ft.
- **Distribution:** Split equally to the two walls parallel to the loading direction (refine by stiffness later if needed).

3.1a L-1 — Wind X (normal to long face)

- $q_z \approx 20.4 \text{ psf}$
- $A_p = 24 \times 50.40 = 1209.6 \text{ sf}$
- $V_{\text{wind},X} = 20.4 \times 1.3 \times 1209.6 \approx 32.1 \text{ k}$
- Two long walls $\rightarrow 16.04 \text{ k}$ each
- Per-ft on A & G: $w_{X,\text{wind}} = 16,040/50.40 = 318.9 \text{ plf}$

3.1b L-2 — Wind Y (normal to short face)

- $A_p = 24 \times 23.77 = 570.48 \text{ sf}$
- $V_{\text{wind},Y} = 20.4 \times 1.3 \times 570.48 \approx 15.1 \text{ k}$
- Two short walls $\rightarrow 7.56 \text{ k}$ each
- Per-ft on 9 & 10: $w_{Y,\text{wind}} = 7,565/23.77 = 318.2 \text{ plf}$

3.1c L-3 — Seismic X (long direction)

- $V_{\text{seis},X} = C_s W = 0.123 \times 166.7 = 20.5 \text{ k}$
- A & G share $\rightarrow 10.25 \text{ k}$ each
- Per-ft on A & G: $w_{X,\text{seis}} = 10,250/50.40 = 203.6 \text{ plf}$

3.1d L-4 — Seismic Y (short direction)

- $V_{\text{seis},Y} = 20.5 \text{ k}$
- 9 & 10 share $\rightarrow 10.25 \text{ k}$ each
- Per-ft on 9 & 10: $w_{Y,\text{seis}} = 10,250/23.77 = 431.0 \text{ plf}$

3.1e L-Recap (service per-ft)

- **Wind:** A,G (X) **318.9 plf**; 9,10 (Y) **318.2 plf**
- **Seismic:** A,G (X) **203.6 plf**; 9,10 (Y) **431.0 plf**

3.2 Gravity Line Loads, Overturning Basis, and Footings

- **Roof-bearing walls (e.g., A, G):** DL $30 \times 26.0 = 780 \text{ plf}$; LL $20 \times 26.0 = 520 \text{ plf}$; $P_f 3.5 \times 26.0 = 91 \text{ plf} \rightarrow 1,391 \text{ plf}$ (balanced). Drift surcharge adds $160/240/320 \text{ plf}$ for $W_d = 10/15/20 \text{ ft}$ (strength only).
- **Mezz-bearing walls (e.g., C):** DL $78 \times 12.0 = 936 \text{ plf}$; LL $125 \times 12.0 = 1,500 \text{ plf} \rightarrow 2,436 \text{ plf}$.

Self-weights (include in service vertical):

- 8" CMU, $h = 24 \text{ ft}$, 125 pcf $\rightarrow 1.668 \text{ k/ft}$
- Footing per-ft: $B \cdot t \cdot 150/1000 \text{ (k/ft)}$

Overturning model (foundation level):

- No-tension $e \leq B/6$ does not apply to OOP C&C; OOP handled by wall/grade-beam reinforcing couple.
- For in-plane wind/seismic (MWFRS), use L-page per-ft reactions and arm $h/2$; target $FS_{OT} \geq 1.5$ at service.

3.2a Roof-Bearing CMU Footing (A & G, long walls)

- **Trial:** $B = 42''$ (3.50 ft), $t = 12''$ (1.00 ft)
- V_{svc} per-ft: $1.391 + 1.668 + 0.450 = 3.509 \text{ k/ft}$
- $q_{svc} = 3.509/3.50 = 1.003 \text{ ksf}$ (OK ≤ 3.0)

Strength steel (LRFD): $a = (42 - 8)/2 = 17'' = 1.417 \text{ ft}$; $q_u \approx 1.6 q_{svc} = 1.605 \text{ ksf}$.

- Shear $V_u = q_u a = 2.277 \text{ k/ft}$; $\phi V_c (t=12'', d \approx 8.5'') \approx 9.7 \text{ k/ft} \rightarrow \text{OK}$
- Moment $M_u = q_u a^2/2 = 1.611 \text{ k-ft/ft}$ ($= 19.33 \text{ k-in/ft}$)
- With $z \approx 0.9d \approx 7.65''$, $\phi f_y z \approx 413 \text{ k-in/in}^2 \rightarrow A_s \geq 19.33/413 = 0.047 \text{ in}^2/\text{ft}$ (min governs)
- **Provide:** #4 @ 12" bottom (0.20 in²/ft); #4 @ 18" top.

Sliding (Wind X): $H = 0.319 \text{ k/ft} \rightarrow FS_{slide} = 0.5 \times 3.509/0.319 = 5.52 \geq 1.5 \rightarrow \text{OK}$

OT (Wind X): $M_{OT} = 0.319 \times 12 = 3.816 \text{ k-ft/ft}$; $M_R = 3.509 \times 1.75 = 6.141 \text{ k-ft/ft} \rightarrow FS_{OT} = 1.61 \geq 1.5 \rightarrow \text{OK}$

Result: $B = 42''$, $t = 12''$, bottom #4@12, top #4@18; bearing / sliding / OT OK (all walls participating).

3.2b Mezz-Bearing CMU Footing (e.g., Grid C)

- **Trial:** $B = 32''$ (2.667 ft), $t = 14''$ (1.167 ft)
- V_{svc} per-ft: $2.436 + 1.668 + 0.467 = 4.542 \text{ k/ft}$
- $q_{svc} = 4.542/2.667 = 1.704 \text{ ksf}$ (OK ≤ 3.0)

Strength steel: $a = (32 - 8)/2 = 12'' = 1.000 \text{ ft}$; $q_u \approx 1.6 \times 1.704 = 2.727 \text{ ksf}$.

- Shear $V_u = 2.727 \text{ k/ft}$; $\phi V_c (t=14'', d \approx 10.5'') \approx 11.9 \text{ k/ft} \rightarrow \text{OK}$
- Moment $M_u = 1.364 \text{ k-ft/ft}$ ($= 16.37 \text{ k-in/ft}$) $\rightarrow A_s \geq 16.37/510 = 0.032 \text{ in}^2/\text{ft}$ (min)
- **Provide:** #5 @ 12" bottom (0.31 in²/ft); #4 @ 18" top.

Sliding: $FS_{slide} = 0.5 \times 4.542/0.319 = 7.14 \rightarrow \text{OK}$

OT: $M_{OT} = 3.816 \text{ k-ft/ft}$; $M_R = 4.542 \times 1.333 = 6.054 \text{ k-ft/ft} \rightarrow FS_{OT} = 1.59 \geq 1.5 \rightarrow \text{OK}$

Result: $B = 32''$, $t = 14''$, bottom #5@12, top #4@18; bearing / sliding / OT OK.

3.2c Final Strip-Footing Schedule (all walls treated as lateral)

Wall line (typical)	Direction/check uses	B (in)	t (in)	Bottom steel (longitudinal)	Top temp	q _{svc} (ksf)	FS _{slide} (wind)	FS _{OT} (wind)
Roof-bearing CMU (A & G)	L-1 Wind X (318.9 plf)	42	12	#4 @ 12" o.c.	#4 @ 18"	1.003	5.52	1.61
Mezz-bearing CMU (e.g., Grid C)	Wind X or Y (~318 plf)	32	14	#5 @ 12" o.c.	#4 @ 18"	1.704	7.14	1.59

3.2d Seismic Spot-Check

- **Long walls (A,G):** $H_{\text{seis}} = 203.6 \text{ plf} \rightarrow M_{\text{OT}} = 0.204 \times 12 = 2.448 \text{ k-ft/ft}$. Roof wall $FS_{\text{OT}} = 6.141/2.448 = 2.51$; Mezz wall = **2.47** → OK.
- **Short walls (9,10):** $H_{\text{seis}} = 431.0 \text{ plf}$ (largest per-ft). If a short wall is *roof-only* and margin is tight, upsize that line to $B = 48''$.

3.3 CMU Walls — Design Checks (All Walls Considered Lateral)

3.3a Common Properties

- 8" fully grouted CMU; $f'_m = 1500 \text{ psi}$; unit/grout $\approx 125 \text{ pcf}$.
- $h = 24 \text{ ft}$; $t = 7.625 \text{ in}$; per-ft strip $b = 12 \text{ in}$.
- Steel Grade 60; vertical bar centroid $d \approx 6.0 \text{ in}$ from compression face.
- OOP C&C (service placeholder): $p_{\text{net}} = 25 \text{ psf}$ (replace with Ch.30 tables).
- Use L-page service base shears: **318.9, 318.2, 203.6, 431.0 plf**.

3.3b Out-of-Plane (C&C) — Vertical Flexure & Deflection

- Per-ft strip simply supported top/bottom (conservative).
- $w_s = 25 \text{ plf} \Rightarrow M_{u,\text{svc}} = 25 \cdot 24^2/8 = 1.8 \text{ k-ft/ft}$.
- $w_u \approx 1.6 w_s = 40 \text{ plf} \Rightarrow M_u = 2.88 \text{ k-ft/ft}$ ($= 34.6 \text{ k-in/in}$).

Flexure (masonry LRFD): $b = 12 \text{ in}$, $d \approx 6.0 \text{ in}$, $\phi = 0.9$, $f_y = 60 \text{ ksi}$. Compression block $a = A_s f_y / (0.8 f'_m b)$, $M_n \approx A_s f_y (d - a/2)$.

- **Option A:** #5@24 → $A_s/\text{ft} = 0.155 \text{ in}^2/\text{ft} \rightarrow a \approx 0.65 \text{ in} \rightarrow \phi M_n \approx 3.96 \text{ k-ft/ft} \geq 2.88$ — OK.
- **Option B:** #5@16 → $A_s/\text{ft} = 0.232 \text{ in}^2/\text{ft} \rightarrow \phi M_n \approx 5.7 \text{ k-ft/ft}$ — OK.

Deflection (cracked, conservative): $E_m \approx 1.35 \times 10^6 \text{ psi}$; $I_g = bt^3/12 = 444 \text{ in}^4/\text{ft}$; $I_{\text{eff}} \approx 0.35 I_g = 155 \text{ in}^4/\text{ft}$. $w = 2.083 \text{ lb/in}$, $L = 288 \text{ in} \Rightarrow \Delta \approx 0.33 \text{ in} \leq L/240 = 1.20 \text{ in}$ — OK.

Provide: Vertical #5@24 minimum; #5@16 near openings or for added OOP margin. Add horizontal steel per 3.3c.

3.3c In-Plane Shear & Base OT (using L-page)

Shear stress screen (per-ft strip): $\tau \approx V_{\text{unit}} / (t \cdot 12)$.

- Wind long wall: $V = 318.9 \text{ plf} \Rightarrow \tau \approx 318.9 / (7.625 \cdot 12) = 3.49 \text{ psi}$.
- Seismic short wall: $V = 431.0 \text{ plf} \Rightarrow \tau \approx 4.72 \text{ psi}$.

Both are very small vs typical masonry shear capacities; horizontal steel mainly for control & tie of collectors.

Horizontal steel (provide): #4@16 ($A_s/\text{ft} = 0.150 \text{ in}^2/\text{ft}$) in bed joints, plus **bond beams** at top, mezz, and roof (~4'-8' o.c.). Foundation coordination: base moment $m = V_{\text{unit}} (h/2)$. Footing widths in 3.2 meet $FS_{\text{OT}} \geq 1.5$ (wind) and > 2.4 (seismic long walls); bump short roof-only lines to $B = 48''$ if needed.

3.3d Anchorage — Roof & Mezz to CMU

Roof ledger / joist seats (uplift & shear):

- Example anchors @ 4 ft; joists @ 7 ft → $A_{\text{trib}} = 28 \text{ sf}$; with $|p| = 25 \text{ psf} \rightarrow T_s = 700 \text{ lb}$.
- Strength: $\phi N_n \geq 1.6 T_s \approx 1.12 \text{ k} \rightarrow$ design $T_u \approx 1.2 \text{ k}$ per anchor (update with final C&C).
- Provide $1/2''$ anchors in fully grouted cells with plate washers; check steel + masonry breakout.
- Ledger in-plane shear from diaphragm reaction; stagger fasteners; verify plate bearing.

Mezz seats (beam pockets): plate + grout take shear; check anchor shear and masonry breakout; provide confinement bars (e.g., #4 each side, hooked).

3.3e Beam Pockets — Bearing & Confinement (example numbers)

- Allowable masonry bearing $f_{b,\text{allow}} \approx 0.25 f'_m = 375 \text{ psi}$; take $\phi \approx 0.6$.
- Required bearing on 7.625" wall: $L_b \geq \frac{R_u}{\phi f_{b,\text{allow}} t_w}$.
- With $R_u = 20.0 \text{ k}$: denominator $= 0.6 \times 375 \times 7.625 = 1715.6 \text{ lb/in} \rightarrow L_b = 20,000/1715.6 = 11.7 \text{ in} \rightarrow$ use **12 in**.

- **Provide:** PL 3/8" × 8" × 12", grout solid, confinement **#4** each side @ ~8".

3.3f AISC J10 — Web Bearing & Crippling (example)

- Beam W12×26, $t_w \approx 0.23$ in with seat plate.
- Web bearing (J10.2): $R_n \approx F_w t_w N$; take $F_w \approx 0.75 F_y \approx 37.5$ ksi, $N = 6$ in $\rightarrow R_n \approx 37.5 \times 0.23 \times 6 = 51.8$ k $\rightarrow \phi R_n(0.9) \approx 46.6$ k ≥ 20 k — OK.
- Crippling (J10.3): with seat plate, W12×26 typically clears ~20 k end reactions; add stiffeners if pocket length is short or reactions increase.

3.3g Detailing Notes

- **Vertical steel:** #5@24 typical (single centered line in grouted cores); #5@16 locally for openings/OOP margin.
- **Horizontal steel:** #4@16 in bed joints (or ladder truss), bond beams at top, mezz, and roof (~4'-8' o.c.).
- **Control joints:** per TMS; align with architectural joints/openings; interrupt joint reinforcement appropriately.
- **Anchorage:** roof ledger/seat anchors to $T_u \approx 1.2$ k (update with final C&C); plate washers; grout confinement.
- **Beam pockets:** PL 3/8"×8"×12", grout solid, **#4** confinement each side.
- **Lateral participation:** all walls act as shear walls; distribute per 3.1. Stiffness-based rebalancing later is covered by footing/steel reserves.

Project: Creech DRP – Shop C Discipline: Structural Org: Michael Baker International

4.0 Inputs & limits

- **Span:** $L = 24$ ft = 288 in (CMU pocket to CMU pocket)
- **Tributary width:** $s = 6.5$ ft
- **Loads:** DL = 78 psf, LL = 125 psf
- **Steel:** $F_y = 50$ ksi, $E = 29,000,000$ psi
- **Deflection limits:**
 - Project goal (LL): $\Delta_{LL} \leq 0.20$ in (stricter than code)
 - Code-style total: $\Delta_{TOT} \leq L/240 = 1.20$ in
- **Design method:** LRFD for strength; service for deflection
- **Support model:** simple-span, non-composite baseline (composite optional)

4.1 Line loads (per ft of beam)

- $w_{DL} = 78 \times 6.5 = 507$ plf
- $w_{LL} = 125 \times 6.5 = 812.5$ plf
- $w_{svc} = 1319.5$ plf
- **LRFD:** $w_u = 1.2D + 1.6L = 1.2(507) + 1.6(812.5) = 1908.4$ plf = **1.9084** k/ft

4.2 Shear & moment (uniform load, simple)

- **Factored shear:** $V_u = w_u L/2 = 1.9084 \times 24/2 = 22.90$ k
- **Factored moment:** $M_u = w_u L^2/8 = 1.9084 \times 24^2/8 = 137.4$ k-ft = 1,648.9 k-in

Flexural strength requirement

$$Z_{\text{req}} = \frac{M_u}{\phi F_y} = \frac{1,648.9}{0.9 \times 50} = \boxed{36.6 \text{ in}^3}$$

(Any reasonable W12 meets this easily.)

Shear strength screen

$\phi V_n \approx 0.9(0.6F_y A_w) \Rightarrow$ typical W12 web area gives $\phi V_n \gg 22.9$ k → **OK**.

4.3 Deflection — what meets the 0.20" target (governing)

Simply supported, uniform LL:

$$\Delta_{LL} = \frac{5 w_{LL} L^4}{384 E I} \Rightarrow I_{\text{req}} = \frac{5 w_{LL} L^4}{384 E \Delta_{LL,\text{target}}}$$

Use: $w_{LL} = 812.5$ plf = 67.708 lb/in, $L = 288$ in, $E = 29,000,000$ psi, $\Delta_{LL,\text{target}} = 0.20$ in.

Required inertia to hit 0.20": $I_{\text{req}} \approx 1,046 \text{ in}^4$

Examples that meet $I \geq 1,046 \text{ in}^4$ (pick by depth family):

- W12x120 ($I_x \approx 1,070$) → $\Delta_{LL} \approx 0.195$ in
- W14x99 ($I_x \approx 1,110$) → $\Delta_{LL} \approx 0.189$ in
- W16x77 ($I_x \approx 1,110$) → $\Delta_{LL} \approx 0.189$ in
- W18x65 ($I_x \approx 1,070$) → $\Delta_{LL} \approx 0.195$ in

These satisfy the 0.20" goal at $L = 24'$, $s = 6.5'$.

4.4 Proceeding with your selection: W12x65

We'll continue with **W12x65** as requested and show how it compares. Typical I_x is on the order of $\sim 520\text{--}560 \text{ in}^4$ (edition-dependent); use $I_x = 540 \text{ in}^4$ for calc.

4.4.1 LL deflection (governing check)

With $I_{\text{req}}(0.20\text{"}) = 1,046 \text{ in}^4$:

$$\Delta_{LL} \approx 0.20 \times \frac{1,046}{540} \approx 0.39 \text{ in}$$

— which does **not** meet the 0.20" goal, but is below code $L/360 = 0.80 \text{ in}$.

4.4.2 Total service deflection

$$\Delta_{TOT} = \frac{5 w_{svc} L^4}{384 E I}.$$

The total requirement $L/240$ corresponds to only $I \approx 283 \text{ in}^4$, so with $I_x \approx 540$ you're well inside the limit. Numerically: $\Delta_{TOT} \approx 0.63 \text{ in}$ ($\ll 1.20 \text{ in}$). If $I_x = 560 \Rightarrow 0.61 \text{ in}$; if $520 \rightarrow 0.65 \text{ in}$.

4.4.3 Strength (restate with W12x65)

- $Z_{\text{req}} = 36.6 \text{ in}^3$
- W12x65 has $Z_x \gg 36.6 \text{ in}^3 \rightarrow \text{bending OK}$
- Shear: $\phi V_n \gg 22.9 \text{ k} \rightarrow \text{OK}$

4.4.4 Pocket reactions & bearing (unchanged geometry)

- **Service end reaction:** $R_{svc} = w_{svc} L/2 = 1.3195 \text{ k/ft} \times 12 = 15.83 \text{ k}$
- **Factored end reaction:** $R_u = w_u L/2 = 1.9084 \times 12 = 22.90 \text{ k}$

Masonry bearing (conservative TMS approach):

$$L_b \geq \frac{R_u}{\phi f_{b,\text{allow}} t_w} = \frac{22,900}{0.6 \cdot 375 \cdot 7.625} \approx 13.3 \text{ in}$$

Provide: PL 3/8" \times 8" \times 16", grout solid; #4 confinement bars each side.

4.4.5 AISC J10 — web bearing/crippling at pocket

- With a seat plate giving $N \approx 8\text{--}12 \text{ in}$ under the web, nominal web bearing ϕR_n comfortably exceeds 22.9 k for a W12; web crippling also OK.
- If the pocket/plate length must be shorter, add end stiffeners at the beam seat.

4.4.6 Vibration note

W12x65 at this span/spacing has $\Delta_{LL} \approx 0.39 \text{ in}$ (stiffer than code minimums but not ultra-stiff); for industrial mezz it typically screens fine. If you want more dynamic stiffness, consider composite (studs) or step up to W12x120 / W16x77.

4.5 Summary for the Gravity packet (W12x65)

- **Member:** W12x65 (simple span)
- **Loads:** DL = 507 plf, LL = 812.5 plf, $w_u = 1.908 \text{ k/ft}$
- **Strength:**
 - $M_u = 137.4 \text{ k-ft} \Rightarrow Z_{\text{req}} = 36.6 \text{ in}^3 \rightarrow \text{OK}$
 - $V_u = 22.90 \text{ k} \rightarrow \text{web shear OK}$
- **Deflection:**
 - $\Delta_{LL} \approx 0.39 \text{ in} \rightarrow \text{does not meet } 0.20\text{" goal}$
 - $\Delta_{TOT} \approx 0.63 \text{ in} \rightarrow \text{OK} (\leq 1.20 \text{ in})$
- **Pocket & anchorage:**

- PL 3/8" x 8" x 16"; grout solid; #4 confinement bars each side
- AISC J10 web bearing/crippling: **OK** with $N = 8-12$ in; stiffeners if shorter
- **Notes to PM:** If strict 0.20" LL is required at $s = 6.5'$, select any section with $I_x \geq 1,046 \text{ in}^4$ (e.g., W12x120, W14x99, W16x77, W18x65). Otherwise, W12x65 is acceptable by code (L/360 & L/240) and is used herein.

4.6 Deck + Slab (20 ga B-deck, 6½" slab) — design framework

Given: non-composite beam design; slab on 20 ga B-deck spanning $s = 6.5$ ft to W12x65 beams.

Loads already used upstream: DL (superimposed) = 78 psf; LL (mezz) = 125 psf. These include slab self-weight + deck weight and toppings per BOD.

4.6.1 Deck serviceability & strength checks (by SDI table)

- **Span = 6.5 ft.** Verify 20 ga B-deck capacity for:
 - Positive flexure & shear under $w = 78 + 125 = 203$ psf (or per manufacturer "superimposed" convention).
 - Web crippling at beam supports (fastener lines).
 - Deflection under service load (typically L/180 or stricter per owner).
- **Fastener schedule:** puddle welds or screws @ 12" o.c. (typ.) along beams; closer at end zones if SDI calls for it.

4.6.2 Slab shrinkage & temp steel

- Provide WWR 6x6-W2.9/W2.9 or #3 @ 18" each way (typical) to control cracking.

4.7 Load path recap (psf → plf → reactions)

- **Tributary width to each beam:** $s = 6.5'$
- **Line loads to beam:**
 - $w_{DL} = 78 \times 6.5 = 507$ plf
 - $w_{LL} = 125 \times 6.5 = 812.5$ plf
 - $w_{svc} = 1319.5$ plf
- **Reactions per end (service):** $R_{svc} = w_{svc}L/2 = 1.3195 \text{ k}/\text{ft} \times 24/2 = 15.83 \text{ k}$
- **Reactions per end (LRFD):** $R_u = w_uL/2 = 1.9084 \text{ k}/\text{ft} \times 24/2 = 22.90 \text{ k}$

4.8 Beam design — W12x65 (final numbers)

4.8.1 Strength

- $V_u = 22.90 \text{ k} \rightarrow$ web shear **OK** ($\phi V_n \gg 22.9 \text{ k}$).
- $M_u = 137.4 \text{ k-ft} = 1,648.9 \text{ k-in}$
- $Z_{req} = M_u/(\phi F_y) = 36.6 \text{ in}^3 \rightarrow$ **OK** (W12x65 $\gg 36.6 \text{ in}^3$).

4.8.2 Service deflection (governing)

- **Goal (LL):** $\Delta_{LL} \leq 0.20 \text{ in} \rightarrow$ requires $I \geq 1,046 \text{ in}^4$ at $L = 24'$, $s = 6.5'$.
- **W12x65** ($I_x \approx 540 \text{ in}^4$ placeholder):
 - $\Delta_{LL} \approx 0.20 \times 1,046/540 = 0.39 \text{ in} \rightarrow$ does not meet 0.20".
 - $\Delta_{TOT} \approx 0.63 \text{ in} \rightarrow$ OK vs 1.20 in.

If PM insists on 0.20" exact at $s = 6.5'$, swap to any member with $I_x \geq 1,046 \text{ in}^4$ (e.g., W12x120, W14x99, W16x77, W18x65) or use composite/continuity.

4.9 Connections & seats (beam pockets into 8" CMU)

4.9.1 Pocket bearing

- **Factored end reaction:** $R_u = 22.90 \text{ k}$
- Masonry bearing (conservative): $\phi = 0.6$, $f_{b,allow} \approx 375 \text{ psi}$, wall $t = 7.625"$

$$L_b \geq \frac{R_u}{\phi f_b t} = \frac{22,900}{0.6 \cdot 375 \cdot 7.625} = 13.3'' \Rightarrow \text{Use } 16''$$

Provide: PL 3/8" × 8" × 16", grout solid; #4 confinement bars each side (hooked).

4.9.2 AISC J10 (web bearing/crippling at pocket)

- With effective plate bearing length $N = 8 - 12''$ under the web:
 - Web bearing ϕR_n typically $\gg 22.9$ k → **OK**
 - Web crippling also **OK** at these reactions; add end stiffeners if N must be short.

4.10 Collector/ledger to CMU (mezz diaphragm tie-in)

- Provide collector angles or plates at beam lines tying diaphragm shear into CMU (bolt through grout-filled cells with plate washers).
- Use L-pages base-shear *per-foot* values to proportion collector fasteners (conservative: design per the larger of wind X/Y or seismic X/Y for that wall line).
- Typical detail: L6×4×1/2 or PL 3/8 with 1/2" anchors @ 4'-6' o.c.; refine once diaphragm shear lines are finalized.

4.11 Vibration screen (quick note)

- With $\Delta_{LL} \approx 0.39''$, W12×65 is stiffer than minimum code and commonly acceptable for industrial mezz.
- If more headroom is desired, consider:
 - Composite studs (raises I_{eff} significantly), or
 - Stepping up to W16×77 / W14×99 / W18×65.

4.12 Gravity System — Member Summary

Item	Value
Span (L)	24 ft
Trib. width (s)	6.5 ft
Loads to beam	DL = 507 plf, LL = 812.5 plf
LRFD line load	$w_u = 1.908$ k/ft
Max factored moment	$M_u = 137.4$ k-ft
Max factored shear	$V_u = 22.90$ k
Required Z	36.6 in ³
Selected beam	W12×65
Deflection (LL goal)	0.39 in (goal 0.20 in → not met)
Deflection (Total)	0.63 in (≤ 1.20 in → OK)
Pocket plate	PL 3/8" × 8" × 16"
Confinement bars	#4 each side of pocket
Alternates to meet $\Delta_{LL} = 0.20''$ @ 6.5'	W12×120 / W14×99 / W16×77 / W18×65 ($I_x \geq 1,046$ in ⁴)

Project: Creech DRP – Shop C Discipline: Structural Org: Michael Baker International

5. Roof Joists – Shop C (7'-0" o.c., ~52' span)

- **Span per joist:** $L = 51.83$ ft = 622 in
- **Spacing:** $s = 7' - 0''$ o.c. (hard line)
- **Joist series under review:** 40LHxx (nominal depth ~40 in; xx = stiffness/weight index)
- **Bracing:** Top chord continuously braced by deck; bottom chord braced with 2–3 rows of bridging.
- **Roof slope:** small; treat loads as vertical.
- **Drift:** occurs at the high-to-low roof step adjacent to Shop C.

5.1 Service Criteria

Total deflection (DL + Snow): $L/240 \Rightarrow \Delta_{allow} = 622/240 = 2.59$ in

(Context considered: LL/SL L/300 & Total L/240, or LL/SL L/240 & Total L/360; final choice for this check = L/240 Total.)

5.2 Loads (service, per joist at 7')

Convert psf \rightarrow plf via $\times 7$ ft.

- **Dead load (D):** 30 psf \rightarrow **210 plf** ($= 0.210$ k/ft)
- **Snow — balanced P_f :** 3.5 psf \rightarrow **24.5 plf** ($= 0.0245$ k/ft)
- **Snow — drift peak $P_{drift,peak}$:** 32 psf \rightarrow **224 plf** (triangular at step)
- **Wind net uplift (corner):** -4.4 psf \rightarrow **-30.8 plf** (for uplift combos/seats)

Wind note (derivation summary): $q_h \approx 20.5$ psf; $G_{cpi} = \pm 0.55 \Rightarrow p_{int} \approx \pm 11.3$ psf; exterior corner ≈ -15.7 psf \rightarrow net ≈ -4.4 psf.

Snow drift for strength (equivalent uniform):

Using $L = 51.83$ ft, evaluate typical drift lengths:

W_d (ft)	S_{eq} (plf)
10	46.1
15	56.9
20	67.7

Snow drift for deflection (service): Use P_f uniform (24.5 plf) + triangular drift (peak 224 plf at step $\rightarrow 0$ at $x = W_d$). We screen via averaged contribution below to compute required I .

5.3 LRFD Load Combinations (ASCE 7-16 Ch. 2)

Let $D = 210$ plf, $S_{base} = 24.5$ plf, $W = -30.8$ plf, and S_{eq} as above.

Combo	Formula	w (plf)	w (k/ft)
LC1	1.4D	294.0	0.2940
LC2	1.2D + 1.6S _{base}	291.2	0.2912
LC3a	1.2D + 1.6(S _{base} + S _{eq} @10')	325.8	0.3258
LC3b	1.2D + 1.6(S _{base} + S _{eq} @15')	343.1	0.3431

LC3c	$1.2D + 1.6(S_{\text{base}} + S_{\text{eq}} @ 20')$	360.4	0.3604
LC4	$1.2D + 1.0W + 0.5S_{\text{base}}$	233.5	0.2335
LC5	0.9D + 1.0W (uplift)	158.2	0.1582

Governing strength = LC3 (snow with drift). **Uplift/seat = LC5.**

5.4 Moments & Shears (simply supported)

Use $M_u = wL^2/8$, $V_u = wL/2$, with $L = 51.83$ ft.

Constants: $L^2/8 = 335.794 \text{ ft}^2$, $L/2 = 25.915$ ft.

Combo	w (k/ft)	M _u (k-ft)	V _u (k)
LC1	0.2940	98.7	7.62
LC2	0.2912	97.8	7.55
LC3a (W_d=10')	0.3258	109.4	8.44
LC3b (W_d=15')	0.3431	115.2	8.89
LC3c (W_d=20')	0.3604	121.0	9.34
LC4	0.2335	78.4	6.05
LC5	0.1582	53.1	4.10

Design target (strength): choose $\phi M_n \geq M_u \times 1.10$ to 1.15 (buffer).

5.5 Serviceability (Total = L/240)

Limit: $\Delta_{\text{allow}} = 2.59$ in (L/240).

Service line loads per joist:

- Base (no drift):** $D + P_f = 210 + 24.5 = 234.5$ plf (0.2345 k/ft)
- With triangular drift** (screening via average 112 plf over $W_d \rightarrow$ equivalent full-span additions):
 - $W_d = 10' \rightarrow +21.6$ plf $\rightarrow 256.1$ plf
 - $W_d = 15' \rightarrow +32.4$ plf $\rightarrow 266.9$ plf
 - $W_d = 20' \rightarrow +43.3$ plf $\rightarrow 277.8$ plf

Required stiffness (simply supported, uniform):

$$\Delta = \frac{5wL^4}{384EI} \Rightarrow I_{\text{req}} = \frac{5wL^4}{384E \Delta_{\text{allow}}}, \quad E = 29,000,000 \text{ psi}, \quad L = 622 \text{ in.}$$

Drift length	w _{serv} (plf)	I _{req} @ L/240 (in ⁴)
0'	234.5	~630
10'	256.1	~690
15'	266.9	~720
20'	277.8	~750

(Reference L/360 targets: ~945 / 1035 / 1080 / 1120 in⁴ respectively.)

5.6 Member-by-Member Service Check (L/240)

Approximate effective I for LH joists (screening ranges):

- 40LH08: ~300 in⁴

- 40LH10: ~450 in⁴
- 40LH12: ~650 in⁴
- 40LH14: ~850 in⁴

Deflection ratio scaling: $\Delta \approx \Delta_{allow} \times (I_{req}/I_{provided})$.

Joist	I _{prov} (in ⁴)	Δ (no drift)	Δ (W _d =10')	Δ (W _d =15')	Δ (W _d =20')
40LH08	300	2.59×(630/300)= 4.79"	2.59×(690/300)= 5.96"	2.59×(720/300)= 6.22"	2.59×(750/300)= 6.48" → FAIL
40LH10	450	2.59×(630/450)= 3.63"	4.00"	4.15"	4.31" → FAIL
40LH12	650	2.59×(630/650)= 2.51"	2.75"	2.87"	2.99" → Borderline / Fail as W _d grows
40LH14	850	1.92"	2.10"	2.20"	2.29" → PASS

Conclusion at L/240 Total:

- **40LH08 / 40LH10:** fail by large margin.
- **40LH12:** OK with no/short drift, but exceeds 2.59" when drift width grows—risky at 7' o.c. for Shop C.
- **40LH14:** passes comfortably across typical drift widths (10–20 ft).

5.7 Strength

LC3 governs: $M_u \approx 109 - 121$ k-ft (for $W_d = 10 - 20$ ft).

- With 10% buffer, target $\phi M_n \geq \mathbf{120 - 133}$ k-ft.
- With 15% buffer, target $\phi M_n \geq \mathbf{125 - 139}$ k-ft.
- **Uplift/Seats (LC5):** $V_u \approx \mathbf{4.10}$ k total → check seat/anchor reactions and bridging for uplift stability.