| Item | Value | Comment |
|---|---|---|
| Wall type | MW8 (8") — partially grouted UNO | Typical construction; grout only reinforced/anchored cells. |
| Vertical reinforcement (typical) | (1) #5 @ 32" o.c. | Typical vertical bar spacing governs tributary width for OOP strip check. |
| OOP pressure | $p = 33\ \mathrm{psf}$ | From governing envelope used in calc packet. |
| Unbraced height | $L = 26.5\ \mathrm{ft}$ | Assume lateral support at top (roof diaphragm/bond beam) and bottom (foundation). |
| Step | Expression | Result | Comment |
|---|---|---|---|
| 2.1.1 | Tributary width (bar spacing): $b_{trib} = 32"/12$ | $b_{trib} = 2.667\ \mathrm{ft}$ | Typical strip away from openings. |
| 2.1.2 | Line load: $w = p\,b_{trib}$ | $w = 33(2.667)=88\ \mathrm{plf}$ | Uniform line load on typical strip. |
| 2.1.3 | Moment demand (simple span): $M_u=\dfrac{wL^2}{8}$ |
$$M_u=\frac{(88)(26.5^2)}{8}=\frac{(88)(702.25)}{8}=7.72\ \mathrm{k\!-\!ft}$$
|
Assumes top/bottom out-of-plane lateral support. |
| Item | Expression | Result | Comment |
|---|---|---|---|
| Geometry | $t=7.625\ \mathrm{in},\ b=32\ \mathrm{in}$ | — | $t$ controls OOP bending; $b$ is tributary strip width along wall. |
| Steel area | $A_s=A_b$ (one bar) | $A_s=0.31\ \mathrm{in^2}$ | One #5 bar (area $0.31\ \mathrm{in^2}$). |
| Effective depth | Assume bar centroid $\approx 1.875$ in from tension face (typ.) | $$d=t-1.875=7.625-1.875=5.75\ \mathrm{in}$$ |
Reviewer-facing assumption. |
| Compression block | $a=\dfrac{A_sF_y}{0.85f'_m b}$ | $$a=\frac{(0.31)(60000)}{(0.85)(2000)(32)}=\frac{18600}{54400}=0.342\ \mathrm{in}$$ |
Rectangular stress block approximation. |
| Nominal moment | $M_n=A_sF_y\left(d-\dfrac{a}{2}\right)$ |
$$M_n=(0.31)(60000)\left(5.75-\frac{0.342}{2}\right)$$
$$=(18600)(5.579)=103{,}769\ \mathrm{lb\!-\!in}$$
$$=\frac{103{,}769}{12}=8.65\ \mathrm{k\!-\!ft}$$
|
OOP flexure about thickness. |
| Design moment strength | $\phi M_n$ with $\phi=0.90$ | $$\phi M_n=0.90(8.65)=7.78\ \mathrm{k\!-\!ft}$$ |
Strength reduction for flexure (typ.). |
| Adequacy | Check: $\phi M_n \ge M_u$ | $$7.78\ \mathrm{k\!-\!ft}\ \ge\ 7.72\ \mathrm{k\!-\!ft}\quad\Rightarrow\quad \textbf{OK}$$ |
Typical partially grouted wall strip is adequate away from openings. |
| Step | Expression | Result | Comment |
|---|---|---|---|
| 2.3.1 | Tributary width: $b_{trib} = 24"/12$ | $b_{trib} = 2.00\ \mathrm{ft}$ | Reduced tributary width per vertical bar line. |
| 2.3.2 | Line load: $w = p\,b_{trib}$ | $w = 33(2.00)=66\ \mathrm{plf}$ | Lower OOP demand due to reduced spacing. |
| 2.3.3 | Moment demand: $M_u=\dfrac{wL^2}{8}$ | $$M_u=\frac{(66)(26.5^2)}{8}=\frac{(66)(702.25)}{8}=5.79\ \mathrm{k\!-\!ft}$$ |
Same simple-span vertical strip assumption (top and bottom support). |
| 2.3.4 | Compression block: $a=\dfrac{A_sF_y}{0.85f'_m b}$ with $b=24$ in | $$a=\frac{(0.31)(60000)}{(0.85)(2000)(24)}=\frac{18600}{40800}=0.456\ \mathrm{in}$$ |
Same single #5 bar area, smaller tributary strip width along wall. |
| 2.3.5 | $\phi M_n=0.90\Big[A_sF_y\Big(d-\dfrac{a}{2}\Big)\Big]$ |
$$\phi M_n=0.90\Big[(0.31)(60000)\Big(5.75-\frac{0.456}{2}\Big)\Big]$$
$$=(0.90)\big[(18600)(5.522)\big]=92{,}433\ \mathrm{lb\!-\!in}$$
$$=\frac{92{,}433}{12}=7.70\ \mathrm{k\!-\!ft}$$
|
Design flexural strength for a 24" tributary strip with one #5 bar. |
| 2.3.6 | Check: $\phi M_n \ge M_u$ | $$7.70\ \mathrm{k\!-\!ft}\ \ge\ 5.79\ \mathrm{k\!-\!ft}\quad\Rightarrow\quad \textbf{OK}$$ |
Provides clear reserve capacity relative to demand. |