
Bluebeam JavaScript Header Fields
Two-Line Input Limits & Page-to-Page
Syncing

This document explains why Bluebeam header fields behave the way they do, and how we
control that behavior using JavaScript.

1. Why Header Fields Are “Per Page”

In Bluebeam (and Acrobat), a form field can exist in two fundamentally different ways:

Single field with multiple widgets (same name on every page)

Multiple independent fields (unique name per page)

This script intentionally uses the second approach:

ProjectName.0

ProjectName.1
ProjectName.2

Why?

Allows different values per sheet if ever needed

Avoids unpredictable behavior when pages are reordered

Works reliably with mixed page sizes (Letter, 11x17, etc.)

Important:
Because these are different fields, they do NOT automatically stay in sync. Any syncing
must be done intentionally with JavaScript.

2. Limiting a Field to Two Lines (Important Gotcha)

The Problem

Bluebeam does not have a built-in “max lines” setting. If a field is multiline, the user can
normally:

Press Enter indefinitely

Paste paragraphs of text

Scroll text out of view

The Solution (Two Layers of Protection)

We enforce a two-line limit using:

1. Keystroke action – blocks typing or pasting beyond two lines
2. Validate action – trims excess lines if something slips through

Why Two Layers?

Keystroke catches normal typing.
Validate catches copy-paste, undo/redo, or edge cases.

The Code

// Prevent typing or pasting more than 2 lines

function PB_limitLinesKeystroke(maxLines) {

 var cur = String(event.value || "").replace(/\r\n/g, "\n");

 var chg = String(event.change || "").replace(/\r\n/g, "\n");

 var before = cur.substring(0, event.selStart);

 var after = cur.substring(event.selEnd);

 var proposed = before + chg + after;

 if (proposed.split("\n").length > maxLines) {

 event.rc = false;

 }

}

// Final cleanup safeguard

function PB_enforceMaxLinesValidate(maxLines) {

 var v = String(event.value || "").replace(/\r\n/g, "\n");

 var lines = v.split("\n");

 if (lines.length > maxLines) {

 event.value = lines.slice(0, maxLines).join("\n");

 }
}

How It’s Applied

f.multiline = true;
f.doNotScroll = true;

f.setAction("Keystroke", "PB_limitLinesKeystroke(2);");

f.setAction("Validate", "PB_enforceMaxLinesValidate(2);");

Result:

User can type exactly two lines

Third line is blocked

Header text never scrolls out of view

3. Syncing Page 1 to All Other Pages

The Goal

When the user edits:

ProjectName.0

We want:

ProjectName.1

ProjectName.2

ProjectName.3

to automatically match it.

Why We Use Page 0 as the “Master”

Clear mental model: edit once

No circular updates

No race conditions

The Sync Function

function PB_syncHeaderField(baseName) {

 var master = this.getField(baseName + ".0");

 if (!master) return;

 for (var p = 1; p < this.numPages; p++) {

 var f = this.getField(baseName + "." + p);

 if (f) f.value = master.value;

 }
}

When Sync Happens

We attach it to the Validate event on page 0:

this.getField("ProjectName.0")

 .setAction("Validate", "PB_syncHeaderField('ProjectName');");

That means:

User finishes typing

Clicks away

All pages update instantly

4. Why We Make Other Pages Read-Only

If every page stayed editable:

Edits could fight each other

Last edit wins (unpredictable)

User confusion

Best Practice

Page 1 (index 0): Editable

All other pages: Mirrors only

function PB_setMirrorsReadonly(baseName) {

 for (var p = 1; p < this.numPages; p++) {

 var f = this.getField(baseName + "." + p);
 if (f) f.readonly = true;

 }

}

5. Why This Design Is Reliable

Page reordering does not break headers

Mixed page sizes work correctly

Headers never scroll or overflow

User edits exactly one location

This approach mirrors how professional calculation packets, drawing headers, and spec
covers are typically automated.

6. Common Questions

“Why not just use one field name everywhere?”

Because Bluebeam will treat them as one logical object. Page reordering and resizing can
produce unpredictable results.

“Why not trust char limits alone?”

Character limits do not control line breaks. Two short lines can exceed one long line visually.

“Why Validate instead of Keystroke only?”

Paste, undo, and scripted changes bypass keystroke. Validate is the safety net.

7. Summary

Two-line limits require JavaScript

Per-page fields require explicit syncing

Page 0 is the master

Validate events are key

This setup is deliberate, robust, and designed for real-world calculation packets.

